Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 4012, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850650

RESUMO

Gut bacteria influence the development of different pathologies caused by bacteria, fungi and parasitoids in insects. Wax moth larvae became more susceptible to fungal infections after envenomation by the ectoparasitoid Habrobracon hebetor. In addition, spontaneous bacterioses occurred more often in envenomated larvae. We analyzed alterations in the midgut microbiota and immunity of the wax moth in response to H. hebetor envenomation and topical fungal infection (Beauveria bassiana) alone or in combination using 16S rRNA sequencing, an analysis of cultivable bacteria and a qPCR analysis of immunity- and stress-related genes. Envenomation led to a predominance shift from enterococci to enterobacteria, an increase in CFUs and the upregulation of AMPs in wax moth midguts. Furthermore, mycosis nonsignificantly increased the abundance of enterobacteria and the expression of AMPs in the midgut. Combined treatment led to a significant increase in the abundance of Serratia and a greater upregulation of gloverin. The oral administration of predominant bacteria (Enterococcus faecalis, Enterobacter sp. and Serratia marcescens) to wax moth larvae synergistically increased fungal susceptibility. Thus, the activation of midgut immunity might prevent the bacterial decomposition of envenomated larvae, thus permitting the development of fungal infections. Moreover, changes in the midgut bacterial community may promote fungal killing.


Assuntos
Microbioma Gastrointestinal/imunologia , Lepidópteros/imunologia , Lepidópteros/microbiologia , Microbiota/imunologia , Micoses/imunologia , Micoses/microbiologia , Animais , Bactérias/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Fungos/genética , Larva/microbiologia , Microbiota/genética , Mariposas/microbiologia , RNA Ribossômico 16S/genética
2.
J Eukaryot Microbiol ; 53(1): 49-57, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16441586

RESUMO

An octospore microsporidium was found in the nymphs of Aeshna viridis, collected in intermittent streams near Novosibirsk, Siberia, Russia in 2003. Spores were uninucleate and measured 6.1+/-0.07 x 3.0+/-0.04 microm on fresh smears. The polar filament was anisofilar having 10-11 anterior coils (thicker filament diam.) and 10-11 posterior (thinner filament diam.) coils. Sporophorous vesicles were persistent and measured 12.3+/-0.23 x 11.9+/-0.20 microm. The infection was restricted to the adipose tissue and caused the formation of whitish "cysts" containing mature octospores. Based on ultrastructural similarity we consider this Siberian isolate to be Systenostrema alba, a species described from Aeshna grandis collected in Sweden (Larsson 1988). Maximum likelihood, neighbor joining, and maximum parsimony analyses of the small subunit rDNA all placed Systenostrema alba (Accession no. AY953292) as the sister taxon to a clade consisting of Thelohania solenopsae, Tubulinosema ratisbonensis, and Tubulinosema acridophagus.


Assuntos
Insetos/microbiologia , Pansporablastina/classificação , Filogenia , Animais , DNA Fúngico/análise , DNA Ribossômico/análise , Microscopia Eletrônica , Dados de Sequência Molecular , Pansporablastina/genética , Pansporablastina/fisiologia , Pansporablastina/ultraestrutura , RNA Ribossômico/genética , Análise de Sequência de DNA , Sibéria , Esporos Fúngicos/fisiologia , Esporos Fúngicos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...